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Abstract Given a distribution ρ on persistence diagrams and observations

X1, . . . , Xn
iid∼ ρ we introduce an algorithm in this paper that estimates a Fréchet

mean from the set of diagrams X1, . . . , Xn . If the underlying measure ρ is a combi-
nation of Dirac masses ρ = 1

m

∑m
i=1 δZi then we prove the algorithm converges to a

local minimum and a law of large numbers result for a Fréchet mean computed by the
algorithm given observations drawn iid from ρ. We illustrate the convergence of an
empirical mean computed by the algorithm to a population mean by simulations from
Gaussian random fields.

Keywords Persistence diagram · Fréchet mean · Topological data analysis ·
Alexandrov space · Persistent homology

1 Introduction

There has been a recent effort in topological data analysis (TDA) to incorporate
ideas from stochastic modeling. Much of this work involved the study of random
abstract simplicial complexes generated from stochastic processes [10–12,14,22,23]
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and non-asymptotic bounds on the convergence or consistency of topological sum-
maries as the number of points increase [2,4,6,19,20]. The central idea in these papers
has been to study statistical properties of topological summaries of point cloud data.

In [16] it was shown that a commonly used topological summary, the persistence
diagram [8], admits a well defined notion of probability distributions and notions
such as expectations, variances, percentiles and conditional probabilities. The key
contribution of this paper is characterizing Fréchet means and variances of finitely
many persistence diagrams and providing an algorithm for estimating them. Existence
of these means and variances was previously shown. However, a procedure to compute
means and variances was not provided.

In this paper we state an algorithm which when given an observed set of persistence
diagrams X1, . . . , Xn computes a new diagram which is a local minimum of the
Fréchet function of the empirical measure corresponding to the empirical distribution
ρn := n−1 ∑n

i=1 δXi . In the case where the diagrams are sampled independently and
identically from a probability measure that is a finite combination of Dirac masses we
provide a (weak) law of large numbers for the local minima computed by the algorithm
we propose.

2 Persistence Diagrams and Alexandrov Spaces with Curvature Bounded from
Below

In this section we state properties of the space of persistence diagrams that we will use
in the subsequent sections. We first define persistence diagrams and the L2-Wasserstein
metric on the set of persistence diagrams. Note that this is not the same metric as was
used in [16]. We discuss the relation between the two metrics and why we work with the
L2-Wasserstein metric later in this section. We then show that the space of persistence
diagrams is a geodesic space and specifically an Alexandrov space with curvature
bounded from below. We show that the Fréchet function in this space is semiconcave
which allows us to define supporting vectors which will serve as an analog of the gra-
dient. The supporting vectors will be used in the algorithm developed in the following
section to find local minima—the algorithm is a gradient descent based method.

2.1 Persistent Homology and Persistence Diagrams

Consider a topological space X and a bounded continuous function f : X → R.
For a threshold a we define sublevel sets Xa = f −1(−∞, a]. For a ≤ b inclusions
Xa ⊂ Xb induce homomorphisms of the homology groups of sublevel sets:

fa,b
� : H�(Xa)→ H�(Xb)

for each dimension �. We assume the function f is tame which means that fc−δ,c
� is

not an isomorphism for any δ > 0 at only a finite number of c’s for all dimensions
� and H�(Xa) is finitely generated for all a ∈ R. We also assume that the homology
groups are defined over field coefficients, e.g. Z2.

By the tameness assumption the image Fa−,b
� := Imfa−δ,b

� ⊂ H�(Xb) is indepen-
dent of δ > 0 if δ is small enough. The quotient group
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Ba
� = H�(Xa)/Fa−,a

�

is the cokernel of fa−δ,a
� and captures homology classes which did not exist in sublevel

sets preceding Xa . This group is called the �-th birth group at Xa and we say that a
homology class α ∈ H�(Xa) is born at Xa if its projection onto Ba

� is nontrivial.
Consider the map

ga,b
� : Ba

� → H�(Xb)/Fa−,b

and denote its kernel as Da,b
� . The kernel captures homology classes that were born

at Xa but at Xb are homologous to homology classes born before Xa . We say that a
homology class α ∈ H�(Xa) that was born at Xa dies entering Xb if its projection
onto Da,b

� is 0 but its projection to Da,b−δ
� is nontrivial for all sufficiently small δ > 0.

We also call b a degree-r death value of Ba
� if rankDa,b

� − rankDa,b−δ
� = r > 0 for all

sufficiently small δ > 0.
If a homology class α is born at Xa and dies entering Xb we set b(α) = a and

d(α) = b and represent the births and deaths of �-dimensional homology classes by a
multiset of points in R

2 with the horizontal axis corresponding to the birth of a class,
the vertical axis corresponding to the death of a class, and the multiplicity of a point
being the degree of the death value. The idea of a persistence diagram is to consider
a basis of persistent homology classes {α} and to represent each persistent homology
class α by a point (b(α), d(α)).

The persistence of α is the difference pers(α) = d(α)−b(α). In the general setting
we could have points with infinite persistence which corresponds to points of the form
(−∞, y) or (x,∞). These points are infinitely far from all points on finite persistence
and hence would have to be treated separately. The space of persistence diagrams
would be forced to be disconnected with each component corresponding to the number
of points at infinity. For the sake of clarity we will restrict ourselves to the case
where all classes have finite persistence. This can be achieved by considering extended
persistence but for simplicity we can simply kill everything by setting ga,b

� = 0 if
b ≥ supx∈X f (x).

After establishing some notation we can define persistence diagrams and the dis-
tance between two diagrams. Let � = {(x, y) ∈ R

2 | x = y} be the diagonal in R
2.

Let ‖x − y‖ be the usual Euclidean distance if x and y are off diagonal points. With a
slight abuse of notation let ‖x −�‖ denote the perpendicular distance between x and
the diagonal and ‖�−�‖ = 0.

Definition 2.1 A persistence diagram is a countable multiset of points in R
2 along

with the infinitely many copies of the diagonal � = {(x, y) ∈ R
2 | x = y}. We

also require for the countably many points x j ∈ R
2 not lying on the diagonal that∑

j ‖x j −�‖ <∞.

Each point p = (a, b) in a persistence diagram corresponds to some homology
class α with b(α) = a and d(α) = b. As a slight abuse of notation we say that p is
born at b(p) := b(α) and dies at d(p) := d(α).
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We denote the set of all persistence diagrams by D. One metric on D is the L2-
Wasserstein metric

dL2(X, Y )2 = inf
φ:X→Y

∑

x∈X

‖x − φ(x)‖2. (1)

Here we consider all the possible bijections φ between the off diagonal points and
copies of the diagonal in X and the off diagonal points and copies of the diagonal in
Y . Bijections always exist as any point can be paired to the diagonal. We will call a
bijection optimal if it achieves this infimum.

In much of the computational topology literature the following p-th Wasserstein
distance between two persistence diagrams, X and Y , is used

dWp (X, Y ) =
(

inf
φ

∑

x∈X

‖x − φ(x)‖p∞
) 1

p
.

In [16] the above metric was used to define the following space of persistence diagrams

Dp = {x | dWp (x,∅) <∞},

with p ≥ 1 and ∅ is the diagram with just the diagonal. It was shown in [16, Theorems
6 and 10] that Dp is a complete separable metric space and probability measures on
this space can be defined. Given a probability measure ρ on Dp the existence of a
Fréchet mean was proven under restrictions on the space of persistence diagrams Dp

[16, Theorem 21 and Lemma 27]. The basic requirement is that ρ has a finite second
moment and the support of ρ has compact support or is concentrated on a set with
compact support.

In this paper we focus on the L2-Wasserstein metric since it leads to a geodesic
space with some known structure. Thus we consider the space of persistence diagrams

DL2 = {x | dL2(x,∅) <∞}.

The results stated in the previous paragraph will also hold for DL2 with metric dL2 ,
including existence of Fréchet means. This follows from the fact that for any x, y ∈ R

2

‖x − y‖∞ ≤ ‖x − y‖2 ≤
√

2‖x − y‖∞, (2)

so dW2(X, Y ) ≤ dL2(X, Y ) ≤ √2dW2(X, Y ). This inequality coupled with the results
in [7] implies the following stability result for the L2-Wasserstein distance.

Theorem 2.2 Let X be a triangulable, compact metric space such that
dWk (Diag(h),∅)k ≤ CX for any tame Lipschitz function h : X → R with Lipschitz
constant 1, where diag(h) denotes the persistence diagram of h, k ∈ [1, 2), and CX

is a constant depending only on the space X. Then for two tame Lipschitz functions
f, g : X→ R we have
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dL2(Diag( f ), Diag(g)) ≤ 2
k+2

2
[
C‖ f − g‖2−k∞

] 1
2 ,

where C = CX max{Lip( f )k, Lip(g)k}.
For ease of notation in the rest of the paper we denote dL2(X, Y )2 as d(X, Y )2.

Proposition 2.3 For any diagrams X, Y ∈ DL2 the infimum in (1) is always achieved.

We prove this proposition in the Appendix.
We now show that the space of persistence diagrams with the above metric is a

geodesic space. A rectifiable curve γ : [0, l] → X is called a geodesic if it is locally
minimizing and parametrized proportionally to the arc length. If γ is also globally
minimizing, then it is said to be minimal. DL2 is a geodesic space if every pair of points
is connected by a minimal geodesic. Now consider diagrams X = {x} and Y = {y}
and some optimal pairing φ between the points in X and Y . Let γ : [0, 1] → DL2

be the path from X to Y where γ (t) is the diagram with points which have travelled
in a straight line from the point (which can be a copy of the diagonal) x to the point
(which can be a copy of the diagonal) for a distance of t‖x − φ(x)‖. In other words,
the diagram with points {(1 − t)x + tφ(x) | x ∈ X}.1 γ is a geodesic from X to Y .
The proof of this is the observation that φX

t : X → γ (t) where

φX
t (x) = (1− t)x + tφ(x) (3)

is optimal.

2.2 Gradients and Supporting Vectors on DL2

We will propose a gradient descent based algorithm to compute Fréchet means. To
analyze and understand the algorithm we will need to understand the structure of DL2 .
We will show that DL2 is an Alexandrov space with curvature bounded from below
(see [5] for more information on these spaces). This result is not so surprising since
there are known relations between L2-Wasserstein spaces and Alexandrov spaces with
curvature bounded from below [13,21]. The motivating idea behind these spaces was
to generalize the results of Riemannian geometry to metric spaces without Riemannian
structure.

The property and behavior of Fréchet means is closely related to the curvature
of the space. For metric spaces with curvature bounded from above, called C AT -
spaces,2 properties of Fréchet means have been investigated and there exist algorithms
to compute Fréchet means [25]. DL2 is not a C AT -space, see Proposition 2.4. DL2

is however an Alexandrov space with curvature bounded from below. Less is known
about properties of Fréchet means in these spaces as well as algorithms to compute
Fréchet means. We use the structure of Alexandrov spaces with curvature bounded

1 If both x and φ(x) are the diagonal then this is the diagonal. If exactly one of x or φ(x) is the diagonal
then we replace it in this sum by the closest point in the diagonal to φ(x) or x respectively.
2 Terminology given by Gromov [9] that stands for Cartan, Alexandrov, and Toponogov.
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from below to compute estimates of Fréchet means and provide some analysis of
these estimates. Note that Fréchet means are the same as barycenters which is what is
referred to in much of the literature.

We first confirm that DL2 is not a C AT -space.

Proposition 2.4 DL2 is not in CAT(k) for any k > 0.

Proof If DL2 ∈ CAT(k) then for all X, Y ∈ DL2 with d(X, Y )2 < π2/k there is
a unique geodesic between them [3, Proposition 2.11]. However, we can find X, Y
arbitrarily close with two distinct geodesics. One example is taking X to be a diagram
with two diagonally opposite corners of a square and Y a diagram with the other two
corners. The horizontal and vertical paths are equally optimal and we may choose the
square to be as small as we wish. �

The following inequality characterizes Alexandrov spaces with curvature bounded
from below by zero [21]. Given a geodesic space X with metric d ′ for any geodesic
γ : [0, 1] → X from X to Y and any Z ∈ X

d ′(Z , γ (t))2 ≥ td ′(Z , Y )2 + (1− t)d ′(Z , X)2 − t (1− t)d ′(X, Y )2. (4)

We now show that DL2 is a non-negatively curved Alexandrov space.

Theorem 2.5 The space of persistence diagrams DL2 with metric d given in (1) is a
non-negatively curved Alexandrov space.

Proof First observe that DL2 is a geodesic space. Let γ : [0, 1] → DL2 be a geodesic
from X to Y and let Z ∈ DL2 be any diagram. We want to show that the inequality
(4) holds.

Let φ be an optimal bijection between X and Y which induces the geodesic γ .
That is γ (t) = {(1 − t)x + tφ(x) | x ∈ X} and defined φt (x) = t x + (1 − t)φ(x) as
done in (3). Let φt

Z : Z → γ (t) be optimal. Construct bijections φX
Z : Z → X and

φY
Z : Z → Y by φX

Z = (φt )
−1 ◦ φt

Z and φY
Z = φ ◦ φX

Z . There is no reason to suppose
that either bijections φX

Z or φY
Z are optimal. Note that if φt

Z (z) = � then φX
Z (z) = �

and φY
Z (z) = �.

From the formula for the distance in DL2 we observe

d(Z , γ (t))2 =
∑

z∈Z

‖z − φt
Z (z)‖2 =

∑

z∈Z

‖z − [(1− t)φX
Z (z)+ tφY

Z (z)]‖2,

d(Z , Y )2 ≤
∑

z∈Z

‖z − φY
Z (z)‖2,

d(Z , X)2 ≤
∑

z∈Z

‖z − φX
Z (z)‖2,

d(X, Y )2 =
∑

z∈Z

‖φX
Z (z)− φ(φX

Z (z))‖2 =
∑

z∈Z

‖φX
Z (z)− φY

Z (z)‖2.

(5)
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Euclidean space has everywhere curvature zero so for each z in the diagram Z , and
all t ∈ [0, 1], we have

‖z − [(1− t)φX
Z (z)+ tφY

Z (z)]‖2 = t‖z − φY
Z (z)‖2 + (1− t)‖z − φX

Z (z)‖2
− t (1− t)‖φX

Z (z)− φY
Z (z)‖.

Combining these equalities with inequalities (5) gives us the desired result. �

2.3 Properties of the Fréchet Function

Given a probability distribution ρ on DL2 we can define the corresponding Fréchet
function to be

F : DL2 → R, Y �→
∫

DL2

d(X, Y )2dρ(X).

The Fréchet mean set of ρ is the set of all the minimizers of the map F on DL2 . If
there is a unique minimizer then this is called the Fréchet mean of ρ. The variance is
then defined to be the infimum of the above functional.

We will show that the Fréchet function has the nice property of being semicon-
cave. For an Alexandrov space 
, a locally Lipschitz function f : 
 → R is called
λ-concave if for any unit speed geodesic γ in 
, the function

f ◦ γ (t)− λt2/2

is concave. A function f : 
→ R is called semiconcave if for any point x ∈ 
 there
is a neighborhood 
x of x and λ ∈ R such that the restriction f |
x is λ-concave.

Proposition 2.6 If the support of ρ is bounded (as in has bounded diameter) then the
corresponding Fréchet function is semiconcave.

Proof We will first show that if the support of a probability distribution ρ is bounded
then the corresponding Fréchet function is Lipschitz on any set with bounded diameter.
We then show that for any unit length geodesic γ and any X ∈ DL2 the function

gX (s) := d(γ (s), X)2 − s2

is concave. We then complete the proof by showing the Fréchet function F is
2-concave at every point (and hence F is semiconcave) by considering F(γ (s))− s2

as
∫

gX (s)dρ(X).
Let U be a subset of DL2 with bounded diameter. This means that there is some K

such that for any Y ∈ U we have
∫

d(X, Y )dρ(X) ≤ K . Here we are also using that
the support of ρ is bounded. Let Y, Z ∈ U . Then
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|F(Y )− F(Z)| = ∣
∣
∫

d(X, Y )2 − d(X, Z)2dρ(X)
∣
∣

= ∣
∣
∫

(d(X, Y )− d(X, Z))(d(X, Z)+ d(X, Y ))dρ(X)
∣
∣

≤
∫

(d(Z , Y ))(d(X, Z)+ d(X, Y ))dρ(X).

= 2K d(Z , Y ).

Let γ be a unit speed geodesic and X ∈ DL2 . Consider the function

gX (s) := d(γ (s), X)2 − s2.

We want to show that gX is concave which means that gX (t x + (1− t)y) ≥ tgX (x)+
(1 − t)gX (y). Let γ̃ (t) be the geodesic from γ (x) to γ (y) traveling along γ so that
γ ((1− t)x + t y) = γ̃ (t) for t ∈ [0, 1] and

tgX (x)+ (1− t)gX (y) = td(γ̃ (0), X)2 + (1− t)d(γ̃ (1), X)2 − t x2 − (1− t)y2

≤ d(γ̃ (t), X)2 + t (1− t)d(γ̃ (0), γ̃ (1))2 − t x2 − (1− t)y2

= d(γ̃ (t), X)2 + t (1− t)(x − y)2 − t x2 − (1− t)y2

= d(γ̃ (t), X)2 − (t x + (1− t)y)2

= gX (t x + (1− t)y).

The inequality comes from the defining inequality (4) that makes DL2 a non-negatively
curved Alexandrov space.

By the construction of gX we can think of F(γ (s)) − s2 as
∫

gX (s)dρ(X). This
means that we can write

t[F(γ (x))− x2] + (1− t)[F(γ (y))− y2] =
∫

tgX (x)+ (1− t)gX (y)dρ(X).

The concavity of gX ensures that tgX (x) + (1 − t)gX (y) ≤ gX (t x + (1 − t)y) and
hence

t[F(γ (x))− x2] + (1− t)[F(γ (y))− y2] ≤
∫

gX (t x + (1− t)y)dρ(X)

= F(t x + (1− t)y)− (t x + (1− t)y)2.

�
We now define the additional structure on Alexandrov spaces with curvature bounded
from below that we will need to define gradients and supporting vectors. This exposi-
tion is a summary of the content in [21,24].

Given a point Y in an Alexandrov space A with non-negative curvature we first
define the tangent cone TY . Let �̂Y be the set of all nontrivial unit-speed geodesics
emanating from Y . For γ, η ∈ �̂Y the angle between them defined by
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� Y (γ, η) := arccos

(

lim
s,t↓0

s2 + t2 − d(γ (s), η(t))2

2st

)

∈ [0, π ],

when the limit exists. We define the space of directions (�Y , � Y ) at Y as the completion
of �̂Y / ∼ with respect to � Y , where γ ∼ η if � Y (γ, η) = 0. The tangent cone TY is
the Euclidean cone over �Y :

TY := �Y × [0,∞)/�Y × {0}
dTY ((γ, s), (η, t))2 := s2 + t2 − 2st cos � Y (γ, η).

The inner product of u = (γ, s), v = (η, t) ∈ TY is defined as

〈u, v〉Y := st cos � Y (γ, η) = 1

2

[
s2 + t2 − dTY (u, v)2].

A geometric description of the tangent cone TY is as follows. Y ∈ DL2 has countably
many points {yi } off the diagonal. A tangent vector is a set of vectors {vi ∈ R

2} one
assigned to each yi along with countably many vectors at points along the diagonal
pointing perpendicular to the diagonal such that the sum of the squares of the lengths
of all these vectors is finite. Observe that there can exist tangent vectors such that
the corresponding geodesic may not exist for any positive amount of time. The angle
between two tangent vectors is effectively a weighted average of all the angles between
the pairs of vectors.

We now define differential structure as a limit of rescalings. For s > 0 denote the
space (A, s · d) by sA and define the map is : sA→ A. For an open set 
 ⊂ A and
any function f : 
→ R the differential of f at a point p ∈ 
 is a map Tp → R is
defined by

dp f = lim
s→∞ s( f ◦ is − f (p)), f ◦ is : sA→ R.

For semiconcave functions the above differential is well defined and we can study
gradients and supporting vectors.

Definition 2.7 (Gradients and supporting vectors) Given an open set 
 ⊂ A and a
function f : 
→ R we denote by∇p f the gradient of a function f at a point p ∈ 
.
∇p f is the vector v ∈ Tp such that

(i) dp f (x) ≤ 〈v, x〉 for all x ∈ Tp

(ii) dp f (v) = 〈v, v〉.
For a semiconcave f the gradient exists and is unique (Theorem 1.7 in [15]). We say
s ∈ Tp is a supporting vector of f at p if dp f (x) ≤ −〈s, x〉 for all x ∈ Tp. Note that
−∇p f is a supporting vector if it exists in the tangent cone at p.

Lemma 2.8

(i) If s is a supporting vector then ‖s‖ ≥ ‖∇p f ‖.
(ii) If p is local minimum of f and s is a supporting vector of f at p then s = 0.
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Proof (i) First observe that from the definitions of ∇p f and supporting vectors we
have

〈∇p f,∇p f 〉 = dp f (∇p f ) ≤ −〈s,∇p f 〉.

We also know that

0 ≤ 〈∇p f + s,∇p f + s〉 = 〈∇p f,∇p f 〉 + 2〈∇p f, s〉 + 〈s, s〉.

These inequalities combined tell us that 0 ≤ −〈∇p f,∇p f 〉 + 〈s, s〉.
(ii) If p is a local minimum of f then dp f (x) ≥ 0 for all x ∈ Tp. In particular

dp(s) ≥ 0. Since s is a supporting vector −〈s, s〉 ≥ dp f (s) ≥ 0. This implies
〈s, s〉 = 0 and hence s = 0. �

We care about gradients and supporting vectors because they can help us find local
minima of the Fréchet function. Indeed a necessary condition for F to have local
minimum at Y is s = 0 for any supporting vector s of F at Y . Since the tangent
cone at Y is a convex subset of a Hilbert space we can take integrals over probability
measures with values in TY . This allows us to find a formula for a supporting vector
of the Fréchet function F .

Proposition 2.9 Let Y ∈ DL2 . For each X ∈ DL2 let FX : Z �→ d(X, Z)2.

(i) If γ is a distance achieving geodesic from Y to X, then the tangent vector to γ at
Y of length 2d(X, Y ) is a supporting vector at Y for FX .

(ii) If sX is a supporting vector at Y for the function FX for each X ∈ supp(ρ) then s =∫
sX dρ(X) is a supporting vector at Y of the Fréchet function F corresponding

to the distribution ρ.

Proof (i) Let γ be a unit speed geodesic from Y to X . Consider the tangent vector
sX = (γ, 2d(X, Y )). Let γ (t)i denote the point in γ (t) that is sent to xi ∈ X . Since γ

is a distance achieving geodesic we know that

inf
φ:γ (0)→X

∑

i

‖xi − φ(xi )‖2 =
∑

i

‖xi − γ (0)i‖2 = FX (Y ).

To show dY FX (v) ≤ 〈sX , v〉 for all v ∈ TY it is sufficient to consider vectors of the
form (γ̃ , 1) where γ̃ is a unit speed geodesic starting at Y . Let γ̃ (t)i denote the point
in γ̃ (t) which started at γ (0)i . This means that xi �→ γ̃ (t)i is a bijection from X to
γ̃ (t) and

dY FX (v) = d

dt

∣
∣
∣
∣
t=0

FX (γ̃ (t))

= lim
t→0

FX (γ̃ (t))− FX (Y )

t

= lim
t→0

inf
{ ∑ ‖xi − φ(xi )‖2 − ‖xi − γ (0)i‖2 |φ : X → γ̃ (t)

}

t
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≤ lim
t→0

∑ ‖xi − γ̃ (t)i‖2 − ‖xi − γ (0)i‖2
t

= lim
t→0

∑ ‖γ̃ (0)i − γ̃ (t)i‖2 − 2‖γ̃ (0)i − γ̃ (t)i‖‖xi − γ (0)i‖ cos θi

t

where θi is the angle between the paths s �→ γ (s)i and t �→ γ̃ (t)i in the plane. Now

‖xi − γ (0)i‖ = ‖γ (d(X, Y ))i − γ (0)i‖ = d(X, Y )
‖γ (s)i − γ (0)i‖

s

for all s > 0 and ‖γ̃ (0)i − γ̃ (t)i‖2 = t2‖γ̃ (0)i − γ̃ (1)i‖2 for all t . This implies that

dY FX (v) ≤ −2d(X, Y ) lim
t,s↓0

∑ ‖γ̃ (t)i − γ̃ (0)i‖‖γ (s)i − γ (0)i‖ cos θi

st
.

Recall from our construction of the tangent cone that

〈v, sX 〉=2dL2(X, Y ) cos( � Y (γ, γ̃ ))

=2d(X, Y )

(

lim
s,t↓0

s2+t2 − d(γ (s), γ̃ (t))2

2st

)

=2d(X, Y )

(

lim
s,t↓0

∑ ‖γ (s)i−γ (0)i‖2+‖γ̃ (t)i−γ̃ (0)‖2−‖γ (s)i−γ̃ (t)i‖2
2st

)

= 2d(X, Y )

(

lim
t,s↓0

∑ ‖γ̃ (t)i − γ̃ (0)i‖‖γ (s)i − γ (0)i‖ cos θi

st

)

.

By comparing these equations we get dY FX (v) ≤ −〈v, sX 〉 and thus we can conclude
sX is a supporting vector.

(ii) Now let sX be any supporting vector of FX . By its definition we know that
dY FX (v) ≤ −〈sX , v〉 for all v ∈ TY and hence

dY F(v) =
∫

dY FX (v)dρ(X) ≤
∫

(−〈sX , v〉) dρ(X) = −〈
∫

sX dρ(X), v
〉
.

�
In the following section we provide an algorithm that computes a local minimum of

a Fréchet function using a gradient descent procedure. The above results will be used
since computing a supporting vector of Z �→ d(X, Z)2 can be significantly easier and
faster than computing a supporting vector of F itself

3 Finding Local Minima of the Fréchet Function

In this section we state an algorithm that computes a Fréchet mean of a finite set of
persistence diagrams with finitely many off diagonal points, and examine convergence
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properties of this algorithm. We will restrict our attention to diagrams with only finitely
many off-diagonal points with multiplicity of the points allowed.

Given a set of persistence diagrams {Xi }mi=1 a Fréchet mean Y is a diagram that
satisfies

min
Y∈DL2

[
Fm :=

∫

DL2

d(X, Y )2dρm(X)
]
,

with the empirical measure ρm := m−1 ∑m
i=1 δXi .

We employ a greedy search algorithm based on gradient descent to find a local
minimum. A key component of this greedy algorithm (see Algorithm 1) consists of a
variant of the Kuhn–Munkres (Hungarian) algorithm [18].

The Hungarian algorithm finds the least cost assignment of tasks to people under
the assumption that the number of tasks and people are the same. The input is the
cost for each person to do each of the tasks. Suppose we have two diagrams X and
Y each with only finitely many off diagonal points. Consider as many copies of the
diagonal in X and Y to allow the option of matching every off diagonal point with the
diagonal. We can think of the points and copies of the diagonal in X as the people
and the points and copies of the diagonal in Y as tasks. The cost of x ∈ X doing task
y ∈ Y is ‖x − y‖2. The total cost of an assignment (or in other words bijection) φ of
tasks to people is

∑
x∈X ‖x − φ(x)‖2. The Hungarian algorithm gives us a bijection

φ that minimizes this cost. This means it gives an optimal pairing between X and Y.

We would like to use the arithmetic mean of points in the plane and some number
of copies of the diagonal. If x1, . . . , xm are points in R

2 then there arithmetic mean
w = 1

n

∑m
i=1 xi is the choice of z that minimizes the sum

∑m
i=1 ‖z−xi‖2. If xi = � for

all i then the arithmetic mean is set to be �. The final case, without loss of generality,
is when x1, . . . , xk are all off diagonal points and xk+1, . . . , xm are all the diagonal.
Let w be the normal arithmetic mean of x1, . . . , xk and let w� be the closest point on
the diagonal to w. We set

w′ := kw + (m − k)w�

m

to be the arithmetic mean of x1, . . . , xm . This is the choice of z that minimizes∑m
i=1 ‖z − xi‖2. We use an operation meani=1,..,m(x j

i ) that computes the arithmetic
mean for each pairing over the diagrams.

Suppose Y is our current estimate for the Fréchet mean. Using the Hungarian
algorithm we compute optimal pairings between Y and each of the Xi . We denote
these pairings as {(y j , x j

i )}Ji
j=1 where Ji is the number of off diagonal in Xi and Y

combined. For each y j �= � we then consider all the xi j . Let ỹ j be the arithmetic

mean of the xi j . Whenever in our pairings {(y j , x j
i )}Ji

j=1 we see a (�, x j
i ) we think

this as a different copy of the diagonal as in any pairing between Y and Xk with k �= i .
We would be using the arithmetic mean of m − 1 copies of the diagonal and x j

i . Let

Y ′ be the diagram with points ỹ j . We will show later that if Y = Y ′ then Y is a local
minimum of the Fréchet function. Otherwise we chose Y ′ to be our current estimate.
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The basic steps of Algorithm 1 is to:

(a) randomly initialize the mean diagram. For example we can start at one of the m
persistence diagrams or the midway point of two of the m diagrams;

(b) use the Hungarian algorithm to compute optimal pairings between the estimate of
the mean diagram and each of the persistence diagrams;

(c) update each point in the mean diagram estimate with the arithmetic mean over all
diagrams—each point in the mean diagram is paired with a point (possibly on the
diagonal) in each diagram;

(d) if the updated estimate locally minimizes Fm then return the estimate otherwise
return to step (b).

Algorithm 1: Algorithm for computing the Fréchet mean Y from persistence
diagrams X1, . . . , Xm .

input : persistence diagrams {X1, . . . , Xm }

return: Fréchet mean {Y }

Draw i ∼ Uniform(1, . . . , n); /* randomly draw a diagram */
Initialize Y ← Xi ; /* initialize Y */

stop← false ;
repeat

K = |Y |; /* the number of non-diagonal points in Y */
for i=1,…, m do

(y j , x j
i )← Hungarian(Y, Xi ) ; /* compute optimal pairings between each

Xi and Y using the Hungarian algorithm */

for j=1,…K do

y j ← meani=1,..,m (x j
i ) /* set each non-diagonal point in Y to the

arithmetic mean of its pairings */

if Hungarian(Y, Xi ) = (y j , x j
i ) then stop← true /* The points in the updated Y

are optimal pairings w.r.t. each Xi */
until stop=true;
return: Y

An alternative to the above greedy approach would be a brute force search over
point configurations to find a Fréchet mean. One way to do this is to list all possible
pairings between points in each pair of diagrams. Then compute the arithmetic mean
for all such pairings. One of these means will be a Fréchet mean. While this approach
will find the complete mean set its combinatorial complexity is prohibitive.

3.1 Convergence of the Greedy Algorithm

The remainder of this section provides convergence properties for Algorithm 1. By
convergence we mean that the algorithm will terminate at some point having found
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a local minimum. The reason for this is that at each iteration the cost function Fm

decreases, at each iteration the algorithm uses a new set of pairings, and there are only
finitely many combinations of pairings between points in the diagrams.

We first develop necessary and sufficient conditions for a diagram Y to be a local
minimum of a set of persistence diagrams. We define Fi (Z) := d(Z , Xi )

2, the Fréchet
function corresponding to δXi . This allows us to define the Fréchet function as F =
1
m

∑m
i=1 Fi corresponding to the the distribution 1

m

∑m
i=1 δXi .

The following lemma provides a necessary condition for a diagram to be a local
minimum of F . This condition is the stopping criterion in Algorithm 1.

Lemma 3.1 If W = {wi } is a local minimum of the Fréchet function F = 1
m

∑m
j=1 Fj

F then there is a unique optimal pairing from W to each of the X j which we denote asφ j

and each wi is the arithmetic mean of the points {φ j (wi )} j=1,2,...,m. Furthermore if wk

and wl are off-diagonal points such that ‖wk−wl‖ = 0 then ‖φ j (wk)−φ j (wl)‖ = 0
for each j .

Proof Let φ j be some optimal pairings (not yet assumed to be unique) between Y and
X j and let s j be the corresponding vectors in the tangent cone at Y that are tangent to
the geodesics induced by φ j and are of length d(X j , Y ). The 2s j are supporting vectors
for the functions Fj (Y ) = d(Y, X j )

2 by Proposition 2.9, so we have 2
m

∑m
j=1 s j is a

supporting vector of F .
From Lemma 2.8 we know that 2

m

∑m
j=1 s j = 0. Since at each wi the s j gives the

vector from wi to φ j (wi ),
∑m

j=1 s j = 0 implies that wi is the arithmetic mean of the
points {φ j (wi )} j=1,2,...,m .

Now suppose that φk and φ̃k are both optimal pairings. By the above reasoning we
have 1

m (s̃k +∑m
j=1, j �=k s j ) = 0 = 1

m

∑m
j=1 s j and hence s̃k = sk . This implies that

‖φ̃k(wi )− φk(wi )‖ = 0 for all wi ∈ W . In particular, for off-diagonal points wk and
wl with ‖wk−wl‖ = 0 and φk an optimal pairing, we can consider the pairing φ̃k with
wk and wl swapped. Since ‖φ̃k(wi )− φk(wi )‖ = 0 for all wi ∈ W we can conclude
that ‖φ j (wk)− φ j (wl)‖. �

We now prove that the above is also a sufficient condition for W to be a local
minimum of F when F is the Fréchet function for the measure 1

m

∑
i δXi withe the

diagrams Xi each with finitely many off-diagonal points. This requires a result about
a local extension of optimal pairings.

Proposition 3.2 Let X and Y be diagrams, each with only finitely many off diagonal
points, such that there is a unique optimal pairing φY

X between them and no off diagonal
point in X matches the diagonal in Y . We further stipulate that if yk and yl are off-
diagonal points with ‖yk − yl‖ = 0 then ‖(φY

X )−1(yk) − (φY
X )−1(yl)‖ = 0. There is

some r > 0 such that for every Z ∈ B(Y, r) there is a unique optimal pairing between
X and Z and this optimal pairing is induced from the one from X to Y . By this we
mean there is a unique optimal pairing φZ

Y from Y to Z and that the unique optimal
pairing from X to Z is φZ

Y ◦ φY
X .

Furthermore, if X1, X2, . . . , Xm and Y are diagrams with finitely many off-diagonal
points such that there is a unique optimal pairing φY

Xi
between Xi and Y for each i with

the same conditions as above, then there is some r > 0 such that for every Z ∈ B(Y, r)
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there is a unique optimal pairing between each Xi and Z and this optimal pairing is
induced by the one from Xi to Y .

Proof Since Y has only finitely many off-diagonal points there is some ε > 0 such
that for every diagram Z with d(Y, Z) < ε there is a unique geodesic from Y to Z .

For each bijection φ of points in X to points in Y , define the function gφ between
X and points in B(Y, ε) by setting

gφ(X, Z) :=
∑

x∈X

‖x − φZ
Y (φ(x))‖2 +

∑

{z∈Z :(φZ
Y )−1(z)=�}

‖z −�‖2,

where φZ
Y is the optimal pairing that comes from the unique geodesic from Y to Z .

First note that gφ(X, Z) ≤∑
x∈X ‖x − φZ

Y (φ(x))‖2 + d(Y, Z)2. Since there are only
finitely many points in X and Y there is a bound M on ‖x−φ(x)‖+ε. M is a bound on
‖x −φZ

Y (φ(x))‖ for all x and all φ. We also know ‖φZ
Y (φ(x))−φ(x)‖ ≤ d(Y, Z) for

all x ∈ X . Let K be the number of off-diagonal points in diagrams X and Y combined.

gφ(X, Z) ≤
∑
‖xi − φZ

Y (φ(xi ))‖2 + d(Y, Z)2

≤
∑

x∈X

(‖x − φ(x)‖ + ‖φ(x)− φZ
Y (φ(x))‖)2 + d(Y, Z)2

≤
∑

x∈X

(‖x − φ(x)‖2 + ‖φ(x)− φZ
Y (φ(x))‖2

+ 2‖x − φ(x)‖‖φ(x)− φZ
Y (φ(x))‖)+ d(Y, Z)2

≤ gφ(X, Y )+ 2d(Y, Z)2 + 2Md(Y, Z) K .

Similarly

gφ(X, Y ) ≤ gφ(X, Z)+ 2d(Y, Z)2 + 2M K d(Z , Y ).

Let φY
X be the optimal pairing from X to Y which is assumed to be unique in the

statement of the proposition. Let φ̂ be another bijection of points in X to points in
Y . Since there are only finitely many off-diagonal points in X and Y there are only
finitely many possible φ̂. Set

β := min
φ̂ �=φY

X

{
g
φ̂
(X, Y )− gφY

X
(X, Y )

} = min
φ̂ �=φY

X

{
g
φ̂
(X, Y )− d(X, Y )2}

which must be positive as φY
X is uniquely optimal by assumption.

Choose r > 0 such that 4r2 + 4M Kr < β. Now suppose that gφ(Z , X) ≤
gφY

X
(Z , X) for some Z ∈ B(Y, r). This will imply that
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gφ(X, Y ) ≤ gφ(X, Z)+ 2d(Y, Z)2 + 2M K d(Z , Y )

≤ gφY
X
(X, Y )+ 4d(Y, Z)2 + 4M K d(Y, Z)

< gφY
X
(X, Z)+ β,

which contradicts our choice of β.
Now suppose X1, X2, . . . , Xm and Y are diagrams with finitely many off diagonal

points such that there is a unique optimal pairing φY
Xi

between Xi and Y for each i .
By the above argument there are some r1, r2, . . . , rm > 0 such that for each i and
for every Z ∈ B(Y, ri ) there is a unique optimal pairing between each Xi and Z and
this optimal pairing is induced by the one from Xi to Y . Take r = min{ri } which is
positive. �

The following theorem states that Algorithm 1 will find a local minimum on termi-
nation.

Theorem 3.3 Given diagrams {X1, . . . , Xm} and the corresponding Fréchet function
F, then W = {wi } is a local minimum of F if and only if there is a unique optimal
pairing from W to each of the X j denoted as φ j and each wi is the arithmetic mean
of the points {φ j (wi )} j=1,2,...,m.

Proof In Lemma 3.1 we showed that it it is a necessary condition.

Given m points in the plane or copies of the diagonal, {x1, x2, . . . , xm}, the choice
of y which minimizes

∑m
i=1 ‖xi − y‖2 is the arithmetic mean of {x1, . . . , xm}. As a

result we know that F(Z) > F(W ) for all Z with the same optimal pairings as W to
X1, X2, . . . , Xm . Since there is some ball B(W, r) such that every Z ∈ B(W, r) has
the same optimal pairings as W , by Proposition 3.2, we know that F(Z) > F(W ) for
all Z in B(W, r). Thus we can conclude that W is a local minimum. �

4 Law of Large Numbers for the Empirical Fréchet Mean

In this section we study the convergence of Fréchet means computed from sampling
sets to the set of means of a measure. Consider a measure ρ on the space of persistence

diagrams DL2 . Given a set of persistence diagrams {Xi }ni=1
i id∼ ρ one can define an

empirical measure ρn = 1
n

∑n
k=1 δXk . We will examine the relation between the two

sets

Y =
{

min
Z∈DL2

[
F :=

∫

DL2

d(X, Z)2dρ(X)
]}

,

Yn =
{

min
Z∈DL2

[
Fn :=

∫

DL2

d(X, Z)2dρn(X)
]}

,

where Y and Yn are the Fréchet mean sets of the measures ρ and ρn respectively.
We would like prove convergence of Yn to Y asymptotically with n—a law of large
numbers result.

123



60 Discrete Comput Geom (2014) 52:44–70

There exist weak and strong laws of large numbers for general metric spaces (for
example see [17, Theorem 3.4]). These results hold for global minima of the Fréchet
and empirical Fréchet functions F and Fn , respectively. It is not clear to us how to
adapt these results to the case of Algorithm 1 where we can only ensure convergence
to a local minimum. It is also not clear how we can adapt these theorems to get rates
of convergence of the sample Fréchet mean set to the population quantity.

In this section we provide a law of large number result for the restricted case where
ρ is a combination of Dirac masses

ρ = 1

m

m∑

i=1

δZi ,

where Zi are diagrams with only finitely many off diagonal points and we allow
for multiplicity in these points. The proof is constructive and we provide rates of
convergence.

The main results of this section, Theorem 4.1 and Lemma 4.2, provide a proba-
bilistic justification for Algorithm 1. Theorem 4.1 states that with high probability
local minima of the empirical Fréchet function Fn will be close to local minima of the
Fréchet function F . Ideally we would like the above convergence to hold for global
minima, the Fréchet mean set. The condition of Lemma 4.2 states that the number
of local minima of Fn is finite and not a function of n. This suggests that applying
Algorithm 1 to a random set of start conditions can be used to explore the finite set of
local minima.

Theorem 4.1 Set ρ = 1
m

∑m
i=1 δZi where Zi are diagrams with finitely many off

diagonal points with multiplicity allowed. Let F be the Fréchet function corresponding

to ρ and Y be a local minimum of F. Set {Xi }ni=1
i id∼ ρ, and denote the corresponding

empirical measure ρn = 1
n

∑n
k=1 δXk and Fréchet mean function Fn. There exists a

local minimum Yn of Fn such that with probability greater than 1− δ

d(Y, Yn)2 ≤ m2 F(Y )

n
ln

(m

δ

)
,

for n ≥ 8m ln m
δ

and m2 F(Y )
n ln

(m
δ

)
< r2 where r characterizes the separation

between the local minima of F.

Proof The empirical distribution is

ρn = 1

n

n∑

k=1

δXk =
1

m

m∑

i=1

ξiδZi ,

where ξi is the random variable that states the multiplicity of each Zi appearing in
the empirical measure, |{k : Xk = Zi }|. Observe that ξ1, ξ2, . . . , ξm can be stated as
a multinomial distribution with parameters n and p = ( 1

m , 1
m , . . . , 1

m

)
.
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We will bound the probability that |ξi − n
m | > ε n

m for any i = 1, 2, . . . , m. We

then will show that under the assumption that |ξi − n
m | ≤ ε n

m for all i = 1, 2, . . . , m

for sufficiently small ε > 0 there is a local minimal Yn with d(Y, Yn)2 <
ε2m F(Y )

(1−ε)2 .

For each i , ξi ∼ Bin(n, 1
m ) and n − ξi ∼ Bin(n, 1 − 1

m ). Using Hoeffding’s

inequality we obtain Pr
[
ξi − n

m ≤ −ε n
m

] ≤ 1
2 exp(−2 ε2n

m ) and

Pr
[
ξi − n

m
≥ ε

n

m

]
= Pr

[
(n − ξi )− (n − n

m
) ≤ −ε

n

m

]
≤ 1

2
exp

(− 2
ε2n

m

)
.

Together they show that Pr
[|ξi − n

m | ≥ ε n
m

] ≤ exp(−2 ε2n
m ) implying the bound

Pr
[
|ξi − n

m
| < ε

n

m
for all i = 1, 2, . . . , m

]
≥ 1− m exp

(− 2
ε2n

m

)
.

From now on we will assume that |ξi− n
m | < ε n

m for all i = 1, 2, . . . , m. Let us consider
our algorithm for finding a local minimal of Fn starting at the point Y . We first define
some notation. We denote the points in Y by {y j }Jj=1. We denote by z j

i := φ
Zi
Y (y j )

the point in Zi that y j is paired to in the (unique) optimal bijection between Y and

Zi . Recall that the z j
i could be the diagonal but from our assumption that Y is a local

minimum no off diagonal point in any Zi is paired with the diagonal in Y .
Let (a j

i , b j
i ) be the coefficients of the vector from y j to z j

i in the basis of R
2 given

by ( 1√
2
, 1√

2
) and (− 1√

2
, 1√

2
). This basis has the advantage that when z j

i is the diagonal

then a j
i = 0 and b j

i = d(y j ,�). From our assumption that Y is a local minimum we

know that
∑m

i=l a j
i = 0 and

∑m
i=l b j

i = 0 for all j and

F(Y ) = 1

m

J∑

j=1

m∑

i=1

(
(a j

i )2 + (b j
i )2).

For the moment fix j . Without loss of generality reorder the Zi so that the first k (with
1 ≤ k ≤ m) of the z j

i are off the diagonal and the remained are copies of the diagonal.
Let yn

j be the point in R
2 given by

y j +
(

1

ξ1 + ξ2 + · · · + ξk

k∑

i=1

ξi ai

)(
1√
2
,

1√
2

)

+
(

1

n

m∑

i=1

ξi b
j
i

)(

− 1√
2
,

1√
2

)

.

By construction this yn
j is the weighted arithmetic mean of the z j

i where we have

weighted by the ξi taking into account that when i > k then z j
i is the diagonal.

Under our assumption that |ξi − n
m | < ε n

m for all i = 1, 2, . . . , m and using
∑k

i=1 a j
i = 0 =∑m

i=1 b j
i we know that

123



62 Discrete Comput Geom (2014) 52:44–70

‖y j − yn
j ‖2 =

1

(ξ1 + ξ2 + · · · + ξk)2

( k∑

i=1

ξi a
j
i

)2

+ 1

n2

( m∑

i=1

ξi b
j
i

)2

= 1

(ξ1 + ξ2 + · · · + ξk)2

( k∑

i=1

(
ξi− n

m

)
a j

i

)2+ 1

n2

( m∑

i=1

(
ξi− n

m

)
b j

i

)2

≤ 1
k2

m2 n2(1− ε)2

ε2n2

m2

( k∑

i=1

(a j
i )2

)

+ 1

n2

ε2n2

m2

( m∑

i=1

(b j
i )2

)

≤ mε2

(1− ε)2

(
1

m

m∑

i=1

(a j
i )2 + (b j

i )2
)

.

Set Yn to be the diagram with off-diagonal points {yn
j }Jj=1. Using the pairing between

Y and Yn where we pair y j with yn
j we conclude that

d(Y, Yn) ≤
J∑

j=1

‖y j − yn
j ‖2

≤
J∑

j=1

mε2

(1− ε)2

(
1

m

m∑

i=1

(a j
i )2 + (b j

i )2
)

≤ mε2

(1− ε)2 F(Y ).

Set δ = m exp
(−2 ε2n

m

)
and solve for ε. This provides the bound that with probability

greater than 1− δ

d(Y, Yn)2 ≤ m2 F(Y )

2n
ln

(m

δ

) 1

(1− ε)2 .

For ε ∈ [0, .25] it holds that (1− ε)−2 < 2 and n ≥ 8m ln m
δ

implies ε < .25.
We want to show that Yn is a local minimum for sufficiently small ε. Indeed it will

be the output of Algorithm 1 given the initializing diagram of Y . Since Y is a local
minimum, Proposition 3.2 implies that there is a ball around Y , B(Y, r), such that
for every diagram in B(Y, r) there is a unique optimal pairing with each Zi which
corresponds to the unique optimal pairing between Y and Zi . That is φ

Zi
X = φY

X ◦ φZi
Y

for all X ∈ B(Y, r). For ε > 0 such that ε2m F(Y )

(1−ε)2 < r2 we have Yn ∈ B(Y, r). Plugging

in for ε results in m2 F(Y )
n ln

(m
δ

)
< r2.

This implies that φ
Zi
Yn
= φY

Yn
◦φZi

Y is the unique optimal pairing between Yn and Zi

for all i and hence φ
Xk
Yn
= φY

Yn
◦ φ

Xk
Y for each of the sample diagrams Xk . If Xk = Zi

then

φ
Xk
Yn

(yn
j ) = φY

Yn
◦ φ

Zi
Y (yn

j ) = φ
Zi
Y (y j ) = z j

i .
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By construction yn
j is the weighted arithmetic mean of the z j

i (weighted by the ξi ),

and hence yn
j is the arithmetic mean of the x j

k . By Theorem 3.3 Yn is local minimum.
�

The above theorem provides a (weak) law of large numbers results for the local
minima computed from n persistence diagrams but it does not ensure that the number
of local minima is bounded as n goes to infinity. The utility of such a convergence
result would be limited if the number of local minima could not be bounded. The
following lemma states that the number of local minima is bounded.

Lemma 4.2 Let ρ = 1
m

∑m
i=1 δZi as before. Let ρn = 1

n

∑n
k=1 δXk be the empirical

measure of n points drawn iid from ρ and Fn is the corresponding Fréchet function.
The number of local minima of Fn is bounded by

∏m
i=1(ki + 1)(k1+k2+...km ). Here ki is

the number of off-diagonal points in the i-th diagram. This bound is independent of n.

Proof Set Yn as a local minimum of Fn . This implies there are unique optimal pairings
φi between Yn and Xi for each i and that any point y in Yn is the arithmetic mean of
{φi (y)}. Since the optimal pairing is unique, if Xi = X j then φi = φ j . This in turn
means that the φi are determined by which of Zi are in the set X j (with multiplicity).
This implies that the number of local minima is bounded by the number of different
partitions into subsets of the points in the ∪X j so that each subset has exactly one
point from each of the X j . The number of subsets is bounded by k1 + k2 + · · · + km

and for each subset there is a bound of
∏m

i=1(ki + 1) on the choices of which element
to take from each of the Xi . Thus the number of different partitions is bounded by∏m

i=1(ki + 1)(k1+k2+···+km ). �
We would like to discuss not only the convergence of local minima but also the

convergence of the Fréchet means. We can do this in the case when there is a unique
Fréchet mean.

Lemma 4.3 Let ρ = 1
m

∑m
i=1 δZi as before. Suppose further that the corresponding

Fréchet function F has a unique minimum. Let ρn = 1
n

∑n
k=1 δXk be the empirical

measure of n points drawn iid from ρ and Fn is the corresponding Fréchet function.
Let Y be the Fréchet mean of F and Yn the set of Fréchet means of Fn. With probability
1 the Hausdorff distance between Yn and Y goes to zero as n goes to infinity.

Proof It is sufficient for us to show for each r > 0 that with probability 1 there is
some Nr such that Yn ⊂ B(Y, r) for all n > Nr .

Fix r > 0. Suppose there does not exist some Nr such that Yn ⊂ B(Y, r) for
all n > Nr . Then there is some sequence of Wnk ∈ Ynk such that d(Wnk , Y) ≥ r .
The set {Wnk } is clearly bounded, off-diagonally birth–death bounded and uniform
and hence precompact. This implies that (Wnk ) has a convergent subsequence (Wnk j ).
Let W denote the limit of this sequence. Since d(Wnk j , Y) ≥ r for all j we have
d(W, Y) ≥ r .

By the arguments in Proposition 2.6 there is some K independent of n such that
Fn is K -Lipschitz in B(W, 1) and hence |Fnk j (Wnk j ) − Fnk j (W )| ≤ K d(Wnk j , W )

for large j . Hence, for all ε > 0 we can say that Fnk j (W ) ≤ Fnk j (Wnk j ) + ε for
sufficiently large j .
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The law of large numbers tells us that Fn(W ) → F(W ) and Fn(Y) → F(Y) as
n→∞ with probability 1. Hence for all ε > 0 we know that with probability 1 both
F(W ) ≤ Fn(W )+ ε and Fn(Y) ≤ F(Y)+ ε for sufficiently large n.

From our assumption that Wnk j is a Fréchet mean of Fnk j we know that
Fnk j (Wnk j ) ≤ Fnk j (Y) for all j .

Let ε > 0. Combining the inequalities above we conclude that with probability 1

F(W ) ≤ Fnk j (W )+ ε ≤ Fnk j (Wnk j )+ 2ε ≤ Fnk j (Y)+ 2ε ≤ F(Y)+ 3ε,

for j sufficiently large. Since ε > 0 was arbitrary we obtain F(W ) ≤ F(Y) which
contradicts the uniqueness assumption about the Fréchet mean. �

5 Persistence Diagrams of Random Gaussian Fields

We illustrate the utility of our algorithm in computing means and variances of persis-
tence diagrams in this section via simulation. The idea will be to show that persistence
diagrams generated from a random Gaussian field will concentrate around the diago-
nal with the mean diagram moving closer to the diagonal as the number of diagrams
averaged increases.

The persistence diagrams were computed from random Gaussian field over the unit
square using the procedure outlined in Sect. 3 in [1]. The field generated is a stationary,
isotropic, and infinitely differentiable random field. The Gaussian was set to be mean
zero and the covariance function was R(p) = exp(−α‖p‖2) where α = 100. A few
hundred levels in the range of the realization of the field were taken for each level a
simplicial complex was constructed. This was done by taking a fine grid on the unit
square and including any vertex, edge or square in the complex if and only if the
values of the field at the vertex or set of vertices (for the edge and square cases) were
higher than the level. The complex increases as the level decreases which provides
the filtering and from which birth–death values of the diagram were computed. We
obtained from Subag 10,000 such random persistence diagrams generated as described
above. These diagrams contain points with infinite persistence, we ignore these points.
Using extended persistence in computing the diagrams would address this issue.

In Fig. 1 we display the mean diagram of sets of 2, 4, 8, 16, 32, 64, 128 diagrams
randomly drawn from the 10,000 diagrams. This is done for both dimensions zero
and one. We wanted to see that as the number of diagrams being averaged increases
the Fréchet means converged. To quantify this concentration we took ten draws of
2, 4, 8, 16, 32, 64, 128 diagrams from the 10,000 diagrams and considered the distri-
bution 1

10

∑10
i=1 δXi where Xi where the Fréchet means of each of the sets of samples.

We then computed the variance of these distributions as documented in Table 1.

6 Discussion

In this paper we introduce an algorithm for computing estimates of Fréchet means
of a set of persistence diagrams. We demonstrate local convergence of this algorithm
and provide a law of large numbers for the Fréchet mean computed on this set when
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Fig. 1 The top two rows plot the mean persistence diagram for dimension zero. Each figure contains four
means computed from the number of diagrams specified in the figure title. Each mean is computed from a
different random sample of diagrams and is plotted in a different color. The bottom two rows are the sample
plots for dimension one

the underlying measure has the form ρ = m−1 ∑m
i=1 δXi , where Xi are persistence

diagrams. We believe that generically there is a unique global minimum to the Fréchet
function and hence a unique Fréchet mean but this needs to be shown.
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Table 1 Variance of the sample
Fréchet means

Number of
samples

H0 H1

2 0.8353 0.9058

4 0.6295 0.6741

8 0.4429 0.5608

16 0.4356 0.4618

32 0.3165 0.3742

64 0.3362 0.2965

128 0.3127 0.2233

The work in this paper is a first step and several obvious extensions are needed.
A law of large numbers result when the underlying measure is not restricted to a
combination of Dirac functions is obviously important. The results in our paper are
strongly dependent on the L2-Wasserstein metric; generalizing these results to the
Wasserstein metrics used in computational topology is of central interest. The proofs
and problem formulation in this paper are very constructive—the proofs and algorithms
are developed for the specific examples and constructions we propose and are not meant
to generalize to other metrics or variants on the algorithm. It would be of great interest
to provide a presentation of the core ideas in the algorithm and theory we developed in
a more general framework using properties of abstract metric spaces and probability
theory on these spaces.
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Appendix

In order to prove Proposition 2.3 we need to give some conditions for a subset of
DL2 to be relatively compact. We will use Theorem 21 in [16] which requires a few
definitions.

Definition 6.1 (Birth–death bounded) A set S ⊂ DL2 is called birth–death bounded,
if there is a constant C > 0 such that for all Z ∈ S and for all � �= x ∈ Z
max{|b(x)|, |d(x)|} ≤ C , where b(x) and d(x) are the births and deaths respectively.

For α > 0 and diagram Z ∈ DL2 we define the maps

uα : DL2 → DL2 such that � �= x ∈ uα(Z)⇐⇒ x ∈ Z & pers(x) ≥ α

lα : DL2 → DL2 such that � �= x ∈ lα(Z)⇐⇒ x ∈ Z & pers(x) < α,
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where uα(Z) is the α-upper part of Z (the points in Z with persistence at least α) and
lα(Z) is the α-lower part of Z (the points in Z with persistence less than α).

Definition 6.2 (Off-diagonally birth–death bounded) A set S ⊂ DL2 is called off-
diagonally birth–death bounded if for all ε > 0, uε(S) is birth–death bounded.

Definition 6.3 (Uniform) A set S ⊂ DL2 is called uniform if for all ε > 0 there exists
α > 0 such that d(lα(Z),�) ≤ ε for all Z ∈ S.

Theorem 21 in [16] states that a subset of DWp is relatively compact if and only if it
is bounded, off-diagonally birth–death bounded and uniform. This also holds for DL2

due to the equivalence in norms stated in (2). We finally are ready to prove Proposition
2.3.

Proof of Proposition 2.3 Fix two diagrams X and Y . Let � be the set of bijections φ

between points in X and points in Y with the further condition that

‖x − φ(x)‖2 ≤ ‖x −�‖2 + ‖φ(x)−�‖2

for all x ∈ X . Recall that by ‖x − �‖ we mean the perpendicular distance from x
to the diagonal which can thought of as pairing x with the closest point to x on the
diagonal. By the above condition we are requiring that we never pair an off diagonal
point x ∈ X with an off diagonal point in Y when pairing both with the diagonal
would be more efficient.

By considering only the bijections in � we are only removing bijections φ̃ for
which there exists some φ ∈ � such that

∑
x∈X ‖x − φ(x)‖2 <

∑
x∈X ‖x − φ̃(x)‖2.

This means that (1) is equal to inf{∑x∈X ‖x − φ(x)‖2 : φ ∈ �}. We will show this
infimum is a minimum.

For each bijection φ ∈ � we can construct a path γφ : [0, 1] → DL2 by setting
γφ(t) to be the diagram with points {(1− t)xi + tφ(xi )|xi ∈ X}. Let S = {γφ(t) : t ∈
[0, 1], φ ∈ �} which contains all the images of the paths γφ . We want to show that S
is relatively compact. To do this we will show that S is bounded, off-diagonally birth–
death bounded and uniform which are sufficient conditions for relative compactness
by Theorem 21 in [16].

Firstly observe that for any bijection φ and any t ∈ [0, 1] we know

d(γφ(t),�)2 ≤ d(X,�)2 + d(Y,�)2

which is finite and independent of φ and t . This implies that the set S is bounded.
We now wish to show that S is off-diagonally bounded. For each ε > 0 there can

only be finitely many points in X and Y whose distance from the diagonal is at least
ε. This implies that there is some C̃ε such that all x ∈ uε(X) and x ∈ uε(Y ) satisfy
max{|b(x)|, |d(x)|} < C̃ε. Let M := max{d(x,�) : x ∈ X or x ∈ Y }. We will show
that if p ∈ uε(Z) for some Z ∈ S then max{|b(p)|, |d(p)|} < C̃ε +

√
2M .
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Consider p ∈ Z for some Z ∈ S. This means p ∈ γφ(t) with φ ∈ � and t ∈ [0, 1]
and hence p = (1− t)x + tφ(x) for some x ∈ X . We have

b(p) ∈ [min{b(x), b(φ(x))}, max{b(x), b(φ(x))}]
d(p) ∈ [min{d(x), d(φ(x))}, max{d(x), d(φ(x))}]

d(p,�) ∈ [min{d(x,�), d(φ(x),�)}, max{d(x,�), d(φ(x),�)}]

In order for d(p,�) ≥ ε either d(x,�) ≥ ε or d(φ(x),�) ≥ ε and hence
min{|b(x)|, |b(φ(x)|} < C̃ε and min{|d(x)|, |d(φ(x)|} < C̃ε.

The condition for φ to be in � is that ‖x−�‖2+‖φ(x)−�‖2 ≥ ‖x−φ(x)‖2 and
hence ‖x−φ(x)‖ ≤ √2M . Since |b(x)−b(φ(x))| ≤ ‖x−φ(x)‖we can conclude that

max{|b(x)|, |b(φ(x)|} ≤ min{|b(x)|, |b(φ(x)|} + √2M < C̃ε +
√

2M.

Similarly we get max{|d(x)|, |d(φ(x)|} < C̃ε +
√

2M.

We now will show that S is uniform. Recall that S is uniform if for all ε > 0 there
exists an α > 0 such that d(lα(Z),�) < ε for all Z ∈ S. For any diagram Z ∈ DL2

denote Mk(Z) as the number of points in Z whose distance to the diagonal is in
[2−k, 2−k+1) for k ≥ 1 and let M0(Z) be the number points with distance in [1,∞).
Let Nk(Z) denote the number of points in Z whose distance from the diagonal is at
least 2−k (in other words the number of off diagonal points in u2−k (Z)).

Let X∪Y be the diagram whose off diagonal points are the union of the off diagonal
points in X and Y . Consider the following sum

∞∑

j=0

N j (X ∪ Y )2−2 j =
∞∑

j=0

( j∑

k=0

Mk(X ∪ Y )
)

2−2 j

=
∞∑

j=0

M j (X ∪ Y )
( ∞∑

k= j

2−2k
)

= 4

3

∞∑

j=0

M j (X ∪ Y )2−2 j

≤ 4

3
d(X ∪ Y,�)2 <∞.

Let ε > 0. Since
∑∞

j=0 N j (X ∪ Y )2−2 j converges there is some L such that

∞∑

j=L

N j (X ∪ Y )2−2 j < ε/4.

Let φ ∈ � be a bijection between X and Y . Consider the path γ : [0, 1] → DL2

where γφ(t) is the diagram with points {(1 − t)x + tφ(x) : x ∈ X}. For the point
(1−t)x+tφ(x) to lie a distance at least 2−k from the diagonal at least one of x or φ(x)
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must lie at least 2−k from the diagonal. This implies that Nk(γφ(t)) ≤ Nk(X ∪ Y ) for
all bijections φ and t ∈ [0, 1]. In other words Nk(Z) ≤ Nk(X ∪ Y ) for all Z ∈ S.

Now for any Z ∈ S we have

d(l2−L (Z),�)2 ≤
∞∑

j=L

M j (Z)2−2 j+2 ≤ 4
∞∑

j=L

N j (Z)2−2 j

≤ 4
∞∑

j=L

N j (X ∪ Y )2−2 j < ε.

Since the choice of α = 2−L was made independently of Z ∈ S we conclude that S
is uniform.

We now know that S (the closure of S) is compact. Every path t �→ γφ(t) is a
Kφ-Lipschitz map from [0, 1] into S with K 2

φ =
∑

x∈X ‖x − φ(x)‖2.

Set K = d(X, Y )+ 1 and let A be the set of K -Lipschitz maps from [0, 1] into S.
Since S is compact, we know by the Arzela–Ascoli theorem that A is compact. By the
definition of the infimum, there exists a sequence of bijections {φ j } such that Kφ j < K
for all j and Kφ j is a sequence converging to K . The corresponding sequence of paths
{γ j := γφ j } is a sequence of K -Lipschitz maps from [0, 1] to S and hence lie in the
compact set A. This means there must be a convergent subsequence of paths {γn j }
with some limit γ which exists and lies in A as A is compact.

Since γn j (0) = X and γn j (1) = Y for all j (as they are all paths from X to Y )
we know that γ (0) = X and γ (1) = Y . From d(γn j (t), γn j (s)) ≤ Kφn j

|s − t | for all
s, t ∈ [0, 1] and all j and the limit Kφn j

→ K as j →∞ we can infer

d(γ (t), γ (s)) ≤ K |s − t |

for all s, t ∈ [0, 1]. If we follow along the path γ where each point x ∈ X goes to in Y
we can construct a bijection φ from points in X to points in Y . This bijection achieves
the infimum in (1).
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